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1 Analyticity, Maximum Principle, and Hartogs’ Lemma

1.1 Analyticity of holomorphic functions

Last time, we defined holomorphic functions of several complex variables: if Ω ⊆ Cn is
open, then f ∈ Hol(Ω) if f ∈ C1(Ω) and ∂f

∂zj
= 0 for all j.

Theorem 1.1. Let D ⊆ Cn be a polydisc centered at 0, and let f ∈ Hol(D). We have,
with normal convergence in D:

f(z) =
∑
α

∂αf(0)

α!
zα.

Here, normal convergence means that
∑
uj converges normally in Ω (

∑
supK |uj | < ∞)

for all compact K ⊆ Ω.

Proof. Let D′ = {|zj | < r′j} for 1 ≤ j ≤ n, where 0 < r′j < rj (and D = D1 × · · · × Dn,
Dj = {|zj | < rj}). Then, by Cauchy’s integral formula,

f(z) =
1

(2πi)n

∫
∂0D′

f(ζ)

(ζ − z)E dζ, E = (1, . . . , 1
.

If |ζj | = r′j and |zj | ≤ r′′j < r′j , then

1

ζj − zj
=

1

ζj

∞∑
k=0

(
zj
ζj

)k
.

Then
1

(ζ − z)E
=
∑
α∈Nn

zα

ζα+E
, (ζ, z) ∈ ∂0D′ ×D′

with normal convergence. We get

f(z) =
∑
α

zα
1

(2πi)n

∫
∂0D′

f(ζ)

ζα+E
dζ =

∑
α

zα
∂αf(0)

α!
.

As D′ ⊆ D is arbitrary, the result follows.
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Corollary 1.1. Let Ω ⊆ Cn be open and connected. If f ∈ Hol(Ω) and ∂αf(z0) = 0 for
all α ∈ Nn for some z0 ∈ Ω, then f ≡ 0.

Proof. The proof is the same as for the 1-dimensional case.

1.2 The maximum principle

Theorem 1.2 (maximum principle). Let Ω ⊆ Cn be open and connected. If f ∈ Hol(Ω)
and |f | assumes a local maximum in Ω, then f is constant.

Proof. Let z0 ∈ Ω be such that |f(z0)| ≥ |f(z)| for all z in a neighborhood of z0. Let
r > 0 be such that {|z − z0| < r} ⊆ Ω, and consider ga(τ) = f(z0 + aτ), where a ∈ Cn
with |a| = 1 and |τ | < r. Then ga ∈ Hol(|τ | < r), and |ga| has a local maximum at 0.
So ga(τ) = ga(0) in |τ | < r by the maximum principle for C. Since a is arbitrary, we get
f(z) = f(z0) in |z − z0| < r. By the previous corollary, f = f(z0) in Ω.

1.3 Hartogs’ lemma

We will prove the following theorem.

Theorem 1.3 (Hartogs’ theorem on separately holomorphic functions). Let Ω ⊆ Cn be
open, and let u : Ω→ C be separately holomorphic (holomorphic in each variable zj, when
the other variables are kept fixed). Then u ∈ Hol(Ω).

Remark 1.1. We do not even assume that u is measurable.

Remark 1.2. The corresponding result in the real domain is not true: for

f(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0),

x 7→ f(x, y) and y 7→ f(x, y) are real analytic, but f is not continuous at (0, 0) (let alone
differentiable).

Here is our starting point.

Proposition 1.1 (Hartogs’ lemma). Let Ω ⊆ C be open, and let (uj) be subharmonic in Ω
such that for all compact K ⊆ Ω, there exists an MK such that uj(z) ≤MK for all z ∈ K
and j = 1, 2, . . . . Assume that there is a C <∞ such that for all z ∈ Ω

lim sup
j→∞

uj(z) ≤ C.

Then for every compact set K ⊆ Ω and each ε > 0, there exists an N such that for all
j ≥ N ,

uj(z) ≤ C + ε, z ∈ K.
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Proof. Replacing Ω by a relatively compact domain containing K, we can assume that (uj)
is bounded above in Ω or even that uj ≤ 0 in Ω. Given compact K ⊆ Ω, let 0 < r <
dist(K,Ωc)/3 and recall the sub-mean value property:

uj(z) ≤
1

πr2

∫∫
|z−ζ|≤r

uj(ζ) dλ(ζ), z ∈ K.

By Fatou’s lemma,

lim sup
j→∞

∫∫
|z−ζ|≤r

uj(ζ) dλ(ζ) ≤
∫∫
|z−ζ|≤r

lim sup
j→∞

uj(ζ) dλ(ζ) ≤ Cπr2.

Thus, for all z ∈ K, there exists jz such that if j ≥ jz, then∫∫
|z−ζ|≤r

uj(ζ) dλ(ζ) ≤ πr2(C + ε/2).

We can assume here that C + ε < 0.
Let |z − w| < δ < r. Then

uj(w) ≤ 1

π(r + δ)2

∫∫
|ζ−w|≤r+δ

uj(ζ) dλ(ζ).

Here, {ζ : |ζ − w| ≤ r + δ} ⊇ {ζ : |ζ − z| ≤ r}. So

uj(w) ≤ 1

π(r + δ)2

∫∫
|ζ−z|≤r

uj(ζ) dλ(ζ)︸ ︷︷ ︸
≤πr2(C+ε/2)

≤
(

r

r + δ

)2

(C + ε/2)

for j ≥ jz. Try to take δ = µr for 0 < µ < 1. The right hand side becomes

1

(1 + µ)2
(C + ε/2),

and we can take µ so this is just C + ε. So we can take

µ =

(
C + ε/2

C + ε

)1/2

︸ ︷︷ ︸
>1

−1.

We can cover K by finitely many neighborhoods of the form {|z − w| < δ} for z ∈ K.

Next time, we will prove the following lemma on our road to Hartogs’ theorem.

Lemma 1.1. Let Ω ⊆ Cn be open, and let u be separately holomorphic in Ω. If u is locally
bounded in Ω, then u ∈ C(Ω) (so u ∈ Hol(Ω)).

3


	Analyticity, Maximum Principle, and Hartogs' Lemma
	Analyticity of holomorphic functions
	The maximum principle
	Hartogs' lemma


